direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C22.D4, C4⋊C4⋊4C6, C2.7(C6×D4), C22⋊C4⋊4C6, (C22×C4)⋊5C6, (C2×D4).4C6, (C2×C6).23D4, C6.70(C2×D4), (C22×C12)⋊5C2, (C6×D4).11C2, C22.4(C3×D4), C6.43(C4○D4), C23.13(C2×C6), (C2×C6).78C23, (C2×C12).65C22, (C22×C6).29C22, C22.13(C22×C6), (C3×C4⋊C4)⋊13C2, (C2×C4).5(C2×C6), C2.6(C3×C4○D4), (C3×C22⋊C4)⋊12C2, SmallGroup(96,170)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22.D4
G = < a,b,c,d,e | a3=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >
Subgroups: 116 in 78 conjugacy classes, 44 normal (20 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×C6, C22.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C3×C22.D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C4○D4, C3×D4, C22×C6, C22.D4, C6×D4, C3×C4○D4, C3×C22.D4
(1 18 5)(2 19 6)(3 20 7)(4 17 8)(9 27 22)(10 28 23)(11 25 24)(12 26 21)(13 46 35)(14 47 36)(15 48 33)(16 45 34)(29 37 43)(30 38 44)(31 39 41)(32 40 42)
(1 43)(2 33)(3 41)(4 35)(5 37)(6 48)(7 39)(8 46)(9 44)(10 34)(11 42)(12 36)(13 17)(14 26)(15 19)(16 28)(18 29)(20 31)(21 47)(22 38)(23 45)(24 40)(25 32)(27 30)
(1 12)(2 9)(3 10)(4 11)(5 21)(6 22)(7 23)(8 24)(13 32)(14 29)(15 30)(16 31)(17 25)(18 26)(19 27)(20 28)(33 44)(34 41)(35 42)(36 43)(37 47)(38 48)(39 45)(40 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 11)(4 9)(6 24)(8 22)(13 15)(14 29)(16 31)(17 27)(19 25)(30 32)(33 35)(34 41)(36 43)(37 47)(38 40)(39 45)(42 44)(46 48)
G:=sub<Sym(48)| (1,18,5)(2,19,6)(3,20,7)(4,17,8)(9,27,22)(10,28,23)(11,25,24)(12,26,21)(13,46,35)(14,47,36)(15,48,33)(16,45,34)(29,37,43)(30,38,44)(31,39,41)(32,40,42), (1,43)(2,33)(3,41)(4,35)(5,37)(6,48)(7,39)(8,46)(9,44)(10,34)(11,42)(12,36)(13,17)(14,26)(15,19)(16,28)(18,29)(20,31)(21,47)(22,38)(23,45)(24,40)(25,32)(27,30), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(13,32)(14,29)(15,30)(16,31)(17,25)(18,26)(19,27)(20,28)(33,44)(34,41)(35,42)(36,43)(37,47)(38,48)(39,45)(40,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,11)(4,9)(6,24)(8,22)(13,15)(14,29)(16,31)(17,27)(19,25)(30,32)(33,35)(34,41)(36,43)(37,47)(38,40)(39,45)(42,44)(46,48)>;
G:=Group( (1,18,5)(2,19,6)(3,20,7)(4,17,8)(9,27,22)(10,28,23)(11,25,24)(12,26,21)(13,46,35)(14,47,36)(15,48,33)(16,45,34)(29,37,43)(30,38,44)(31,39,41)(32,40,42), (1,43)(2,33)(3,41)(4,35)(5,37)(6,48)(7,39)(8,46)(9,44)(10,34)(11,42)(12,36)(13,17)(14,26)(15,19)(16,28)(18,29)(20,31)(21,47)(22,38)(23,45)(24,40)(25,32)(27,30), (1,12)(2,9)(3,10)(4,11)(5,21)(6,22)(7,23)(8,24)(13,32)(14,29)(15,30)(16,31)(17,25)(18,26)(19,27)(20,28)(33,44)(34,41)(35,42)(36,43)(37,47)(38,48)(39,45)(40,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,11)(4,9)(6,24)(8,22)(13,15)(14,29)(16,31)(17,27)(19,25)(30,32)(33,35)(34,41)(36,43)(37,47)(38,40)(39,45)(42,44)(46,48) );
G=PermutationGroup([[(1,18,5),(2,19,6),(3,20,7),(4,17,8),(9,27,22),(10,28,23),(11,25,24),(12,26,21),(13,46,35),(14,47,36),(15,48,33),(16,45,34),(29,37,43),(30,38,44),(31,39,41),(32,40,42)], [(1,43),(2,33),(3,41),(4,35),(5,37),(6,48),(7,39),(8,46),(9,44),(10,34),(11,42),(12,36),(13,17),(14,26),(15,19),(16,28),(18,29),(20,31),(21,47),(22,38),(23,45),(24,40),(25,32),(27,30)], [(1,12),(2,9),(3,10),(4,11),(5,21),(6,22),(7,23),(8,24),(13,32),(14,29),(15,30),(16,31),(17,25),(18,26),(19,27),(20,28),(33,44),(34,41),(35,42),(36,43),(37,47),(38,48),(39,45),(40,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,11),(4,9),(6,24),(8,22),(13,15),(14,29),(16,31),(17,27),(19,25),(30,32),(33,35),(34,41),(36,43),(37,47),(38,40),(39,45),(42,44),(46,48)]])
C3×C22.D4 is a maximal subgroup of
(C22×C12)⋊C4 C22⋊C4⋊D6 C6.792- 1+4 C4⋊C4.197D6 C6.802- 1+4 C6.812- 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C6.822- 1+4 C4⋊C4⋊28D6 C6.612+ 1+4 C6.1222+ 1+4 C6.622+ 1+4 C6.632+ 1+4 C6.642+ 1+4 C6.652+ 1+4 C6.662+ 1+4 C6.672+ 1+4 C6.852- 1+4 C6.682+ 1+4 C6.692+ 1+4
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 12A | ··· | 12H | 12I | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | D4 | C4○D4 | C3×D4 | C3×C4○D4 |
kernel | C3×C22.D4 | C3×C22⋊C4 | C3×C4⋊C4 | C22×C12 | C6×D4 | C22.D4 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 3 | 2 | 1 | 1 | 2 | 6 | 4 | 2 | 2 | 2 | 4 | 4 | 8 |
Matrix representation of C3×C22.D4 ►in GL4(𝔽13) generated by
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
7 | 11 | 0 | 0 |
11 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 |
9 | 8 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 |
7 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 12 | 12 |
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[7,11,0,0,11,6,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[5,9,0,0,0,8,0,0,0,0,1,12,0,0,2,12],[1,7,0,0,0,12,0,0,0,0,1,12,0,0,0,12] >;
C3×C22.D4 in GAP, Magma, Sage, TeX
C_3\times C_2^2.D_4
% in TeX
G:=Group("C3xC2^2.D4");
// GroupNames label
G:=SmallGroup(96,170);
// by ID
G=gap.SmallGroup(96,170);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-2,313,938,122]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations